## Problem 1

Consider a situation as sketched. The wall is made of steel, with a thermal conductivity


Calculate the steady state heat flux $q$ and the temperatures $\mathrm{T}_{\mathrm{wh}}, \mathrm{T}_{\mathrm{wc}}$.

## Problem 2

The earth's surface is exposed to yearly variations of air temperature, of the form


$$
\begin{equation*}
T_{s}=\bar{T}+\Delta T \sin \omega t \tag{1}
\end{equation*}
$$

where $\bar{T}$ is the mean temperature, $\Delta T$ is the peak seasonal variation, say 20 K in temperate latitudes, and

$$
\omega=\frac{2 \pi}{1 y r}=\frac{2 \pi}{3.15 \times 10^{7}} s^{-1} .
$$

The soil has a thermal conductivity $k \cong 1.6 \mathrm{w} / \mathrm{m} / \mathrm{K}$, a density $\rho \cong 2000 \mathrm{Kg} / \mathrm{m}^{3}$ and a specific heat $c \cong 2000 \frac{\mathrm{~J}}{\mathrm{KgK}}$.
(a) Assume the temperature distribution is of the form $T-\bar{T}=\operatorname{Re}\left[A e^{i(\omega t-k y)}\right]$ where A is a complex amplitude factor, and $\operatorname{Re}[$ ] means the real part of a complex number. Substitute into the transient heat conduction equation and calculate k as $k= \pm \sqrt{-i \frac{\omega}{\alpha}}= \pm(1-i) \sqrt{\frac{\omega}{2 \alpha}}$. Show that the lower sign leads to
exponential divergence with y , so select the upper sign. Choose the constant A so as to reproduce the variation $T_{s}(t)$ on the surface. Your solution should be

$$
\begin{equation*}
T(y, t)=\bar{T}+\Delta T e^{-\sqrt{\frac{\omega}{2 \alpha}} y} \sin \left(\omega t-\sqrt{\frac{\omega}{2 \alpha}} y\right) \tag{2}
\end{equation*}
$$

(b) At what depth is the amplitude of the temperature oscillation reduced to $\pm 1 K$ ? If peak surface temperature happens on August 1, when does it happen at that depth?

